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Abstract. The problem of generating a random sample over a level set, called Uniform
Covering, is considered. A variant is discussed of an algorithm known as Pure Adaptive Search
which is a global optimisation ideal with a desirable complexity. The algorithm of Uniform
Covering by Probabilistic Rejection is discussed as an approach to the practical realisation of PAS.
Consequences for the complexity and practical performance in comparison to other algorithms are
illustrated.
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1. Uniform covering

The discussions and analyses in this paper originate from the confidence region
questions in parameter estimation. In parameter estimation a goodness of fit
objective function describes how well a model fits data given values for a parameter
vector. The global minimum of this function corresponds to values for the
parameters which fit best, are most likely to be the ‘real’ parameter values. In
parameter estimation and nonlinear regression the confidence region contains
parameter values which are ‘nearly as likely’ as the optimal one. The confidence
region coincides with a level set of the goodness of fit objective function, see e.g.
Bates and Watts (1988), Ross (1990), Donaldson and Schnabel (1987) and Hendrix
(1998). In general the confidence region, level set, is approximated by an ellipsoidal
region based on the Jacobian in the minimum. This approximation can be poor when
the underlying model is highly nonlinear, as illustrated by Klepper and Hendrix
(1994) with a simple case of logistic regression and in Klepper and Bedaux (1997)
with an application of a toxicological threshold model. This happens in general
when the level set is banana shaped. Many researchers in parameter bounding have
raised the question what is a good way to represent the level set, see e.g. Walter and
Piet-Lahanier (1990) and Donaldson and Schnabel (1987). One way to do so is to
generate parameter-values from the level set of the goodness of fit function, as if
they are sample points from a uniform distribution. This is the question we look at.
How can points from a uniform distribution, a so-called random sample, be
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generated over a level set without having to evaluate the function (model run) too
many times? We look into a number of stochastic global optimization methods
accomplishing this.

We use the following symbols, common in literature on optimization methods. A
goodness of fit function f(x) is minimized over a robust, compact feasible set

nX , R , usually a box region. Variable y represents the level of the function f and
S( y) 5 hx [ X u f(x) < yj a level set. V(?) denotes the volume of a set. Evaluating f(x)
implies running a large model, so one would like to do that as few times as possible
for reaching the target. The target, called Uniform Covering, is to generate a sample
of N points from a uniform distribution over a level set S(a) with a predefined level
a . y 5 min f(x).X*Two criteria are important:
Effectiveness: The set of N points should represent a sample of a distribution ‘‘as

uniform as possible’’. There are various methods to measure this
uniformity.

Efficiency: One should use as few function evaluations as possible.

The research on these criteria was stimulated by the idea of Uniform Covering by
Probabilistic Rejection (UCPR) of Klepper and Hendrix (1994), to represent a level
set, confidence region. The idea is outlined in Figure 1. A set of N points
P 5 h p , . . . , p j , S(a) can be used to generate a new point in S(a) in the1 N

following way.

UCPR method to generate a random point in S(a) given a set P of points

1. Repeat
generate a random point x in Xtrial

Until ' iix 2 p i < rtrial i

2. Calculate f(x )trial

if f(x ) < atrial

x is in S(a)trial

else go to 1

The parameter r is, for reasons to become clear, usually taken as the average
interpoint distance, the average nearest neighbour distance. So for every point p thei

distance to the nearest other point in P is determined and the average is taken over
all these distances. The idea behind the UCPR approach is, that it is much cheaper
in function evaluations than a Pure Random Search variant, where every random
generated point is evaluated. The respberry set

R 5 hx [ X u' p [ P, ix 2 p i < rji i

should:
(1) cover set S(a) well (preferably S(a) , R) to ensure effectiveness; usually there

are holes in R, S(a) may not be fully covered.
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Figure 1. Uniform covering by probabilistic rejection.

(2) not stick too much out of set S(a) to ensure efficiency, so that function
evaluations are not performed in vain.

Those aspects are analyzed in Section 3, in which complexity is discussed. We do
not use the paradigm of formal proofs, but try to make results from literature
plausible by using extreme cases. Moreover, we show why ideals originating from
assumptions on the algorithms are improbable to be reached; a property of ideals in
general. In Section 2, we look at stochastic algorithms for global optimization from
the literature, which can be used. In Section 4, a numerical evaluation of the
methods follows.

2. Algorithms

For the generation of the set of N points in S(a), several bench-mark methods in
stochastic global optimization can be used.

Pure Random Search (PRS) is one extreme. It consists of generating points
from a uniform distribution over X and checking whether the function value is lower
than a. An algorithm for finding N such points are the following.

PRS algorithm for generating N points of S(a)

P 5 [

Repeat
generate x from a uniform distribution over Xtrial

if f(x ) < atrial

add x to Ptrial

Until uPi 5 N
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Effectiveness of PRS is 100% in the sense that set P will consist of a sample from
a uniform distribution over S(a). The efficiency is obviously not very good, as the
expected number of function evaluations to obtain one point in S(a) is V(X) /V(S(a)),

ˇ¨see among others Torn and Zilinskas, 1989.
Pure Adaptive Search (PAS) is not a real implementable algorithm, but a tool

for analysis on complexity and some sense an ideal, see Patel et al., 1989. The
analysis in literature focuses on the question of what would happen if we could
sample a point at each iteration in the improving region, the level set of the current
iterate. The following scheme shows how this ability could be used to generate one
point in S(a).

PAS algorithm for generating one point of S(a)

:0. Generate x uniformly from X, k 5 11

:1. y 5 f(x )k k

2. If y , a STOPk

3. Sample a point x from a uniform distribution over S( y )k11 k

:4. k 5 k 1 1, go to Step 1

The most important property, shown among others by Patel et al. (1988) and by
Zabinsky and Smith (1992), is that in some sense the number of iterations grows
less than exponential in the number of variables of the problem.* In Section 3, we
will try to make this plausible to the reader and show why it is improbable that this
ideal will be reached. I.e. it is unlikely that Step 3 of the algorithm can be performed
in a time which grows polynomially in the dimension n of the problem. The ideal of
PAS could be used to generate N points in S(a) by repeating the procedure N times.
One could argue that it is more efficient not to restart the procedure for every point
to be generated starting at Step 0, but to restart from a lower level set S( y ), withk

level y reached in earlier iterations closer to the level of a. However, we have tok

keep in mind that PAS is a hypothetical benchmark algorithm. In order to compare
this extreme to some other algorithms, we now discuss a population variant of the
algorithm.

N points PAS has been introduced by the authors to analyze what happens, if we
would be able to perform PAS with a population N points simultaneously.

* To be precise, the point x should be strictly improving in Step 1 of the algorithm for thisk11

property, i.e. f(x ) , y .k11 k
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NPAS algorithm for generating N points of S(a)

:0. Generate a set P of N random points h p , . . . , p j in X, k 5 11 N

1. Determine ymax 5 f( pmax ) 5 max f( p ), p [ Pk k j j j

2. If ymax , a, STOPk

3. Generate and evaluate a point in the interior of S( ymax )k

add it to the sample and remove pmaxk

:4. k 5 k 1 1; go to Step 1

We will make it plausible that the complexity is of the same magnitude as that of
PAS.

The method of Price, or Controlled Random Search (CRS), was introduced
(Price, 1979) as a simple global optimization heuristic. It was one of the first
algorithms which uses a population of points. At every iteration, from the population
of N points, m 1 1 points are taken at random. In the first versions of the algorithm,
m was taken as the dimension n. One can consider the choice of m as a parameter
which influences the performance of the algorithm, which goes beyond the scope of
our study. A new point x is generated in a Nelder-Mead fashion by reflectingtrial

point p over the centroid of the remaining so-called mirroring points p , . . . , p .m11 1 m

CRS algorithm for generating N points of S(a)

:0. Generate a set P of N points uniformly over X, k 5 1
1. Determine ymax 5 f( pmax ) 5 max f( p ), p [ Pk k j j j

2. If ymax , a STOPk

3a. Take m 1 1 points, p , . . . , p , from P1 m11

m2
: ]3b. x 5 O p 2 ptrial j m11m 1

3c. If f(x ) , ymaxtrial k

x replaces pmax in Ptrial k

:4. k 5 k 1 1 and go to 1

The algorithm as given here can be seen as an approximation of NPAS. Note,
however, that in contrast to the ideal, not necessarily at every iteration (function
evaluation) an improving point is found.

The controlled random search algorithm, due to its simplicity, has been popular
for solving practical problems, e.g. Garcia et al. (1997), Klepper and Rouse (1991).
This practical use contrasts with the unpopularity of the algorithm by researchers on
the theory of global optimization algorithms; there is no analysis possible on the
performance of the algorithm, nor can anything be said on how good the final
population resembles a sample from a uniform distribution over S(a). Klepper and
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Figure 2. Generation of a new point by CRS.

Rouse (1991) have generated cases for which the resulting sample is unlikely to be
from a uniform distribution over the level set (effectiveness). It can be shown that
the mirroring procedure tends to bias the cloud of N points towards a radially
symmetrical subset of the level set, especially for a high value of m. We will
illustrate the numerical performance in Section 4.

The UCPR idea can be used to derive a specific algorithm which can be seen as
another attempt to approximate the ideal of NPAS. Generating a point in the interior
of a level set is of course the crucial practical point for PAS as well as for NPAS. By
simple rejection, the complexity is that of PRS. Uniform Covering by Probabilistic
Rejection (UCPR) can be seen as an attempt to come close to generating points
uniformly in the level set.

UCPR algorithm for generating one point of S(a)

:0. Generate N random points P 5 h p , . . . , p j in X, k 5 11 N

1. Determine ymax 5 f( pmax ) 5 max f( p ), p [ Pk k j j j

2. If ymax , a STOPk

3a. Calculate the average interpoint distance rk

:R 5 hx [ Xu ' p [ P, ix 2 p i < c*r jk i i k

3b. Generate and evaluate a point x from a uniform distribution over R .trial k

3c. If f(x ) , ymaxtrial k

x replaces pmax in Ptrial k

:4. k 5 k 1 1; go to Step 1
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Calculation of ray r in Step 3a for reasons to become clear, is done byk

determining the average nearest neighbour distance. So for every point p thei

distance to the nearest other point in P is determined and the average is taken over
all these distances. The choice of the distance parameter c is discussed in 3.1 and
3.2 and explored in numerical tests. As in the NPAS algorithm the set S 5 S( ymax )k k

defines the current level set. This set is globally covered by the raspberry set R ,k

from which new candidate points are generated. Stated in other words, in contrast to
PRS no points are evaluated that are too distant from the current point set. The
evaluation of points is assumed to include far more computational effort than the
generation of random points. Therefore, the efficiency of an algorithm is measured
as the number of function evaluations required. Notice again, that similar to the CRS
algorithm, not every function evaluation in Step 3 leads to an improvement. This is
caused by R sticking out of S( ymax ). When the generation of random points ink k

UCPR is done in a rejection way, as suggested in Section 1, the set X can be
replaced by a rectangular box around R . A further refinement is to rotate the boxk

along the principal axes of the current point set. The algorithm is illustrated by
Figure 3.

Hit and Run (H&R) is a way of generating points in an adaptive random search
algorithm. The random process proceeds as follows. At the current iterate a direction
is generated from a uniform distribution over the unit sphere. The possible step-
range is determined in that direction and a step-length is generated from a uniform
distribution over the possible step-range.

Figure 3. Elements of the UCPR algorithm.
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Hit and Run process for generating points on X

:0. k 5 1, x [ X is starting point1

1. Generate d from a uniform distribution over the unit spherek

3. Generate l from a uniform distribution over hl [ R, x 1 ld [ Xjk k k

:4. x 5 x 1 l dk11 k k k

:5. k 5 k 1 1, go to 1

The process was studied among others by Smith (1984), who showed that for
k → ` the points x are uniformly distributed over X. This resembles the target wek

are looking for. Therefore, we will analyze the method, construct an algorithm and
use this variant in the numerical illustration. In global optimization the process was
studied by Romeijn (1992) and Romeijn and Smith (1994) who used it in a
simulated annealing context. Zabinsky et al. (1993) studied the efficiency of the
algorithm.

There are many ways to use the Hit and Run (H&R) process to generate points in
a level set. We define a population variant here, where one point of the population is

Figure 4. Hit and Run process.
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used as a starting point to generate new points until it fails to find a point in the level
set, a so-called hit. In the numerical examples, a constant W is defined to determine
the level a defined as a 5 W 3 y . In this algorithm explicit use is made of W by

*defining an estimate ymin of y and in this way updating the level of acceptance ak *whenever a better (record) point is found. Again the sequence is initialised by first
drawing N points uniformly in X. The lowest function value in this set is used to
estimate y . At random one of the points in the set which is also in S(a) is used to

*start H&R. Occasionally the estimate for y and the corresponding acceptance level
*

a is adjusted. Notice that this procedure differs from the former algorithms, where
the focus is on ymax . One could think of many alternatives to construct ak

population algorithm which uses the Hit and Run process; this is just one of them.

Algorithm for generating N points of S(a) based on Hit and Run process

:0. Generate a set P of N points uniformly over X, k 5 1
1a. Determine ymin 5 min f( p ), p [ Pk j j j

1b. a 5 W 3 ymink

1c. Remove p from P with f( p ) . aj j

2. If uPu 5 N STOP
3a. Select at random a point, p from P as starting point for Hit and Run

:3b. Repeat generate x with one Hit and Run step, k 5 k 1 1trial

If f(x ) , a add x to P and use it as starting pointtrial trial

else go to Step 3a
Until uPu 5 N or f(x ) , ymintrial k

4. go to 1

Theoretically the algorithm may stop too early when W 3 ymin exceeds thek

predefined level (not estimated) of a. However, in the experiments we use in
Section 4, it never did.

3. Analysis on the complexity of the algorithms

In this section some complexity results, presented in literature, are discussed and the
relation to the algorithms in Section 2 is given. We will not follow the paradigm of
formal proofs, but instead try to make results plausible. As a tool, some extreme
problems are used.

First problem Q1 is introduced:

min f(x) 5 ixi
(Q1)

non X 5 hx [ R u ixi < 1j .
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For PRS, the probability of obtaining a point in S(a) is exponentially related to n;
for problem Q1 exactly:

nV(S(a)) /V(X) 5 a .

This probability goes to zero exponentially when the dimension n increases. The
expected number of function evaluations to obtain a point in S(a) therefore also
increases exponentially in the dimension n. This efficiency gives a kind of upper
bound on the expected number of function evaluations necessary to obtain a random
sample on S(a).

As stated before, PAS gives a kind of ideal. It was shown by Zabinsky and Smith
(1992) that for problems satisfying the Lipschitz condition, the expected number of
iterations grows linearly in the dimension. The expected number of iterations is
shown to be bounded by

1 1 n 3 ln(L 3 d /a) ,

in which L is the Lipschitz constant and d the diameter of the feasible area X.
Before going further on the impact of this result for complexity issues and raising
the question ‘‘what happens with L and d in the formula when the dimension n
grows’’, we try to make the result plausible by exercising with problem Q1.
Problem Q1 makes the analysis as simple as possible, as both Lipschitz constant L
as well as diameter d are constant for increasing dimension.

For PAS we focus on the improvement per iteration in terms of the volume
reduction of the level set V(S ) /V(S ). At a certain iteration a level y withk11 k k

corresponding level set S 5 S( y ) has been reached. Let x be a random variablek k

uniformly distributed over S and y 5 f(x) the corresponding random function value.k
n nFor problem Q1, random variable y has the c.d.f. F ( y) 5 y /y . In every iteration ofk k

PAS, the volume V(S ) of S is reduced to V(S ), which is also a random variable.k k k11

The expectation of the reduction is
yk1n n n]EhV(S ) /(S )j 5 E[y /y ] 5 E y dF ( y) 5 1/2 .nk11 k k ky 0k

On average in every iteration half of the volume is thrown away. The same result
based on a completely different analysis was found by Baritompa and Steel (1996).
Because the reductions are independent and identically distributed, the expected

kreduction after k iterations is a multiplication (1 /2) of the expected reduction of the
volume of 1/2.

If the volume reduction would in every iteration be the expected value, the
nnecessary number of iterations to obtain one point in S(a) (with relative volume a )

is at least n 3 ln(a) / ln(1 /2). Ignoring the variation in the reduction leads to linearity
of the number of iterations in the dimension. Generating N points by running PAS N
times, if realisable, would require a number of iterations which is linear in N as well
as n.

Now we focus on the impact of this linearity property. The theorem says that if



ON UNIFORM COVERING, ADAPTIVE RANDOM SEARCH AND RASPBERRIES 153

we are able to perform sampling in the improving region (Step 3 in the PAS
algorithm) in polynomial time, we are able to solve some types of problems in
polynomial time. To realise the consequence, we construct problem Q2.

Let g be an arbitrary Lipschitz continuous function defined on the unit cube
nX 5 [0, 1] with a given Lipschitz constant « (« , 1). So for all binary solutions n ,j

n ]În ( j, k 5 1, . . . , 2 ) ug(n ) 2 g(n )u < « 3 n. To find the minimum of g over allk j k
nbinary solutions n , it is necessary to check all 2 feasible vertices of the unit cube,j

so that the optimum cannot be found in polynomial time. Now we construct Q2 as a
Global Optimization equivalent of this binary problem:

min f(x) 5 g(x) 1O x (1 2 x )i i
(Q2)

X 5 h0 < x < 1, i 5 1, . . . , nji

Problem Q2 has been constructed such that in every vertex n , g(n ) equals f(n ) andj j j
nthat all of the 2 vertices of X are local optima of Q2. To realise this one should see

that a direction into the feasible area from an arbitrary vertex is an ascent direction.
Given any direction pointing into the feasible area, the directional derivative of the
penalty o x (1 2 x ) namely dominates (>1) the directional derivative of g (.2«).i i

Therefore every vertex is a (strict) local minimum.
So Q2 is equivalent to a binary programming problem. To solve Q2, a calculation

time is necessary which grows exponentially in the dimension n. Considering the
PAS result for Q2, we see that L 5 « is constant and the diameter d of X grows with

]În. If we were able to get a point in the improving region S( y ) in a polynomialk

calculation time (Step 3), the expected number of function evaluations is bounded
by a polynomial to solve complex problem Q2. We would be able to solve an NP
hard problem in an expected number of iterations which grows polynomially in the
dimension of the problem. It is improbable that we will be able to do so.

The great 20th century philosopher Karl Popper (1902–1994) taught us how
science proceeds and how it concerns problems; ‘‘we start with a problem’’. By
further analyzing one problem, we get better insight and arrive at the next problem.
In this context we consider the PAS result as a progress in the Popperian way of
thinking. We started with the problem
– Can we solve global optimization problems in polynomial time?

By logic steps (mathematics) the next question was derived:
– Can we generate points from a uniform distribution in a level set (given one point

at the boundary) in polynomial time?
The latter problem remains worthwhile to look into.

A following achievement in the line of the PAS result, which stimulated our
analysis, is the appearance of a paper by Baritompa et al. (1995) called ‘Towards
Pure Adaptive Search’. In this paper it was shown that PAS can be relaxed by
requiring that there is a fixed probability r that the next iteration point is uniform in
the improving region, called r-adaptive search. The same complexity bound holds
as that of PAS. Again by reasoning reversely, we can conclude that it is unlikely that
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such a fixed probability exists. The idea of r-adaptive search was called by the
authors of the paper Somewhat Adaptive Search. Considering UCPR as an
approximation of PAS, we were tempted to call a paper on UCPR ‘Towards
Somewhat Adaptive Search’. Namely, if sampling in R leads to uniform points ink

S and the failure rate, frequency with which one samples outside S , would bek k

bounded by a fixed proportion not depending on the dimension, the UCPR algorithm
would be a realisation of r-adaptive search and with that an algorithm with an
expected polynomial solution time. As we hope to have made clear, this is unlikely
to happen. A more recent elaboration on adaptive search can be found in Bulger and
Wood (1998) under the terminology of hesitant adaptive search. We will elaborate
on uniform covering and failure rate of the UCPR algorithm after first considering
the complexity of the N-points variant of PAS.

In the NPAS algorithm the current level set S is defined by the maximum ymaxk k

of the function values of N uniformly distributed points over S . In the nextk21

iteration a new point is generated and evaluated within S . The new level set S isk k11

:determined by the new maximum of N points in S ; z 5 max( y , . . . , y ).k 1 N

Let again F ( y) be the c.d.f. of the function value of a point randomly chosenk

(uniformly) in level set S . The c.d.f. of extreme order value z is given byk
N

F(z) 5 [F (z)] . Specifically for problem Q1 this implies thatk

nN
F(z) 5 (z /ymax ) .k

The expectation of the reduction in volume of the level set for NPAS is

yk1 Nn] ]]EhV [S(z)] /V [S( ymax )]j 5 E z dF(z) 5 .nk N 1 1y 0k

So at every iteration the volume of the level set is reduced by a factor (expected
value) N /(N 1 1). For N 5 1 this gives the PAS result. Neglecting the varia-
tion in this stochastic reduction leads to the conclusion that NPAS requires
n 3 ln(a) / ln(N /(N 1 1)) iterations to obtain N points in S(a).

In practice there exists no realisation of PAS nor NPAS. We only have the
approximation of NPAS by UCPR. What is the consequence of deviating from the
ideal in terms of effectiveness and efficiency? Two observations were given in
Section 1.

3.1. EFFECTIVENESS OF UCPR

R does not completely cover S due to the holes in the set. How much worse are wek k

doing in terms of uniformity of the next sample point? What is the probability that a
point in S is not covered by R ? Let us define S9 5 R > S . Furthermore, thek k k k k

volume of a ball (berry) B 5 hx u ix 2 p i < cr j around a point p in the currenti i k i
n n n / 2sample is V(B ) 5 q c r , with the appropriate constant q 5 p /G(1 1 n /2) (q 5i n k n 2

2p ; q 5 4/3p ; q 5 1/2p , etc.). If we assume that B is completely in set S for all3 4 i k
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i, then the probability that a uniformly randomly generated point in S is not in Rk k

(and in S9 ) isk

n n Nq c rn k]]1 2 .S DV(S )k

The quantity r is chosen to be the average nearest neighbour distance of the samplek

points, as it is known from literature on spatial statistics (see Cliff and Ord, 1981;
nRipley, 1981) that q r estimates the inverse of the density of points in a setn k

S : V(S ) /N. This idea implies that the ratio V(S9 ) /V(S ) can be approximated byk k k k

n NcS D]1 2 1 2 .N

By increasing c, this ratio can become arbitrarily close to unity. So by enlarging
parameter c, the approximation of the failure rate can be pushed to zero. A larger
value for c also causes a kind of repair effect, as R can walk in the direction ofk

points of S which did not have any sample points in it. However, not only thek

assumption that B is a subset of S becomes less valid with increasing c, but there isi k

also the drawback on the efficiency; more points are drawn and evaluated which are
outside of S .k

3.2. EFFICIENCY OF UCPR

We introduce the failure rate as V(R \S9 ) /V(R ), the ratio of points that are generatedk k k

outside the interior of S . Baritompa et al. (1995) taught us that if there is a fixedk

probability r at every iteration that a point is generated from a uniform distribution
over the interior of S , the same linear complexity result as that of PAS holds. Ak

necessary condition to be a r-adaptive algorithm, is that the failure rate is bounded
above by a constant 1 2 r, which does not depend on the dimension.

We use problem Q1 again to get an idea of a bound of the part of R that sticksk

out of S , the failure rate. A part of a ball B around point p can only stick out of Sk i i k

if p is closer than cr to the boundary of S . On purpose we use the sphericali k k

problem Q1, as this is an extreme case in the sense that the surface /volume ratio is
at a minimum. Therefore, the spherical problem gives a kind of lower bound on the
failure rate, as for all other level sets the surface /volume ratio is at least as big. This
means the probability of being close to the boundary is in general bigger. For
problem Q1, the probability that p is closer than cr to the boundary of S isi k k

ncrk]]1 2 1 2 .S Dymaxk

So the fraction of points in the sample close to the surface of the boundary
approaches unity exponentially in n. This means that for higher dimensions all
volume or ‘probability mass’ tends to the boundary. This effect was noticed by
many researchers in stochastic global optimization, who tried to get rid of boundary
effects. Notice again that spherical level sets give a minimum of the surface /volume
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ratio in the sense that a sphere has the highest volume for a given surface of the
boundary. For level sets with another shape the fraction is even worse.

Is there a way to approximate r-adaptive better with UCPR? For Q1, spatial
21 / nstatistics tells us that the average interpoint distance r ø ymax 3 N . In higherk k

dimensions the distance tends to the maximum distance of 1, the world gets very
empty, the nearest neighbour is desolately far away. This means a more than
exponential increase of N with n is required to give the r-adaptive characteristic.
This would again affect the convergence speed N /(N 1 1). This analysis supports
the hypothesis, that it is improbable that r-adaptive search will be realised in
practice. The tendencies are illustrated in Section 4 for some test examples.

3.3. EFFECTIVENESS OF HIT AND RUN

Some last remarks are due to the Hit and Run process. The appealing property of the
process is, that for k → `, the iterate x resembles a random variate from a uniformk

distribution over X, as shown by Smith (1984). Zabinsky et al. (1993) derived
further that the efficiency in the limit situation where the algorithm is in a local
search stage converging for a spherical (or elliptical) function to the unique

2.5optimum, the expected number of function evaluations grows with n . The
question is what will happen in practice, where we are not in the limit situation
k → ` and in cases when there are several global optimum points with respect to the
effectiveness. Let us have a look at the individual iterations. One of the observations
due to Romeijn et al. (1997) is that if x is in a corner of X, the next iteration tendsk

to stay in the environment of x . Therefore, Romeijn et al. suggested a repairk

mechanism by a reflection operation.
Another observation which is usually made from Figure 4 is the decreasing

sampling density when a point is further away from x . We are typically interested ink

what happens when the dimension increases. Notice first that in the one-dimensional
case, every iteration is obviously already uniformly distributed over X. To make the
sampling density analyzable in higher dimension, we refrain from boundary effects
and introduce the following two sets:

set ‘close’ C: hx [ X u ix 2 x i < «jk

set ‘far away’ F : hx [ X u« < ix 2 x i < 2«j .k

In all dimensions the probability to obtain the next iterate in inner sphere C is equal
to the probability to get the next point in outer sphere F. When the ratio of the
volumes of F and C is inspected

n nV(F ) (2«) 2 « n]] ]]]5 5 2 2 1 ,nV(C) «

it can be seen that points in F have a lower probability density than points in C. The
discrepancy with the uniform distribution of the Hit and Run step increases in some
sense exponentially in the dimension n. Analysis of discrete and continuous variants
of the Hit and Run process makes it possible to study the speed of convergence of
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the associated Markov chains towards a uniform distribution in higher dimensions.
This defines an interesting problem. The limit theory is valid, but intuitively we
require more and more (exponentially more) points to reach a uniform distribution in
higher dimensions. We will see this effect in the numerical illustrations.

4. Numerical illustration

In this section the algorithm of UCPR is compared with implementations of other
algorithms with respect to effectiveness and efficiency. The algorithm is effective if
its result is a sample of a uniform distribution over S(a). Several numerical tests
measuring departure from a uniform distribution are available from spatial statistics.
We are using an easy to interpret measurement. The set S(a) is partitioned and the
number of points in each compartment or partition set is compared to the expected
number of points in the set. The number of compartments depends on the number of
global minimum points of the test function. To measure the efficiency, the expected
number of function evaluations to obtain the sample of N points is used. This is
approximated by measuring the average number of function evaluations over several
runs.

To illustrate the performance we use seven nonlinear test functions defined on a
hyperrectangular domain. Furthermore the complexity of the UCPR algorithm is
illustrated by a variant of the spherical problem in various dimensions and with
varying values for the parameter c. First the test functions and the implementation of
the algorithms are discussed.

4.1. TEST FUNCTIONS

To compare the performance, the 7 test functions given in Table 1 were used.
Functions f and f are standard test functions which can be found in literature on3 4

ˇ¨Global Optimization among others in Torn and Zilinskas, 1989. The target of the
algorithms is to generate a prefixed number N 5 100n points in the level set S(a).
The level a is defined by a 5 Wy . For the first test function W 5 1.15 and for the

*others W 5 1.2 was used.

4.2. THE ALGORITHMS

Pure Random Search (PRS) has a straightforward implementation for the test
problems. We continue until N points have been found. To implement Pure Adaptive
Search (NPAS), a way should be found to generate points in the interior of S . Ink

this test, pure random search was done, but function evaluations to measure the
efficiency were only counted for points generated in the current level set. In the
implementation of Controlled Random Search (CRS) we used m 5 2.

4.3. EFFECTIVENESS

The uniformity of the coverage of the N 5 100n points generated was tested for the
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Table 1. Test functions used in the comparison between methods

Domain Definition a

2 2 2 2f [12, 22] least-squares fit o (b 2 f ) of f 5 1/((1 1 (a 2 x ) (1 1 (a 2 x ) ) 1.411 1 1 2 2

to data h(a , a , b)j 5 h(15, 15, 0.6), (15, 20, 0.7), (20, 15, 0.7),1 2

(20, 20, 0.8)j (note: x and x parameters)1 2
2f [21, 3] 3 [22, 3] least-squares fit o (b 2 f ) of f 5 exp(x )a /(exp(x ) 1 a) to 0.0372 1 2

data h(a, b)j 5 h(0.9, 0.4), (0.9, 0.55), (1, 0.4), (1, 0.6)j
2f [22, 2] (Golden-Price), f 5 0.1g h with 0.363 3 3 3

2 2 2g 5 1 1 (x 1 x 1 1) (19 2 14x 1 3x 2 14x 1 6x x 1 3x )3 1 2 1 1 2 1 2 2
2 2 2h 5 30 1 (2x 2 3x ) (18 2 32x 1 12x 1 48x 2 36x x 1 27x )3 1 2 1 1 2 1 2 2

2 2f [25, 10] 3 [0, 15] (Branin) f 5 g 1 h , g 5 (x 2 5.1(x /2p)) 1 5x /p 2 6) 0.484 4 4 4 4 2 1 1

and h 5 10(1 2 1/8p) cos(x ) 1 104 1
2 2 2f [0, 4.34] 3 2 sin(x ) 2 sin(x ) 1.25 1 2

n 2f [22, 2] if (x 1 x 1 ? ? ? 1 x ) , 0: 1 1 o (1 2 x ) 1.26 1 2 n i
2else 1 1 o (x 1 1)i

n 2f [21, 1] 1 1 o x7 i
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functions f , f , f and f that have multiple optima by comparing the expected1 4 5 6

number NR (with respect to uniform covering) of points to arrive in aexpected

particular compartment of the level set to the actual number NR . Functions f ,sample 1

f and f have 3, 3 and 9 global minimum points respectively and the corresponding4 5

level set has as many compartments. The size of the compartments and corre-
sponding expected number of points can be determined numerically. Function f is a7

so-called spherical problem (spherical level sets) with one global minimum point
and although the effectiveness cannot be measured in the same way, we can observe
the efficiency in several dimensions. Analogously, function f can be called a6

bispherical problem, where the level sets have two equal sized compartments and
therefore allows us to measure effectiveness in the same way and the effect of a
varying dimension n. For the illustration n 5 2, 4 and 8 are used. The results of
measuring (NR 2 NR ) /NR (in an ideal uniform situation with asample expected expected

value of zero) are depicted graphically in Figure 5.

Figure 5. Measure of uniformity of the final samples (horizontal line would indicate
complete uniformity), three test runs for every function and algorithm.
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On the x-axis the three test runs are adjacent (one run of f with n 5 8 failed). The6

width of the bars is proportional to the expected number NR of points in eachexpected

compartment. The y-axis gives the relative deviation of the resulted number of
points NR in each compartment from the expected number of points:sample

(NR 2 NR ) /NR . A horizontal line would indicate perfect uni-sample expected expected

formity.
The results show that both H&R and CRS are significantly non-uniform: H&R in

15 out of 17 cases and CRS in 8 out of 17 cases. H&R places all points in one of the
compartments for bispherical problem f in higher dimensions. UCPR passes all6

tests with only one exception, one run for the function f which has relatively many5

compartments. Perhaps surprisingly, CRS (which is known to be biased) is better
than H&R, which should be uniform in limit. Apparently the rate at which H&R
converges towards a uniform distribution is quite slow as discussed in Section 3.3.

4.4. EFFICIENCY

The efficiency has been measured as the number of function evaluations (for NPAS
the records) necessary to obtain the set of N points.

For the spherical ( f ) and bispherical ( f ) test problems with variable dimension6 7

n, the efficiency of UCPR is no longer better than that of the others. In particular in
the case of f the performance of H&R is superior, but it has a serious drawback on6

uniformity as can be derived from Figure 5. All of the N points are concentrated in
only one of the two compartments of S(a). This result illustrates that while the rate
of convergence for H&R is affected only in minor extent with increasing dimension,
its convergence to uniformity decreases rapidly. With increasing n the chance of
accidentally arriving in the second compartment of the level set becomes vanishing
small. This non-uniformity is also the explanation of the fact that H&R converges
considerably faster than ‘optimal’ (NPAS) for n 5 4 and n 5 8.

4.5. COMPLEXITY

To reduce the advertisement character (this conflicts with Popperian science), which
usually speaks from numerical results such as that of Table 2, let us focus on the
analysis of failure rate and uniformity with the aid of a simple (extreme case)
numerical experiment. The analysis of Section 3 is illustrated here by applying the
UCPR algorithm for generating N 5 50 points in S(1.05) for spherical problem f ,7

with varying dimension and value for the parameter c. It has been argued that
parameter c gives a trade-off between effectiveness (uniformity of the final sample)
and efficiency (number of function evaluations). There are many ways to measure
the tendency of the sample to originate from a uniform distribution (see Ripley,
1981). We illustrate the idea of a Chi-square statistic here. The parameter space can
be partitioned arbitrarily. In the former, we applied the compartments of the level set
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Table 2. Numerical results being average number of function evaluations over three runs

Function n N PRS NPAS H&R CRS UCPR

f 2 200 5688 870 1207 1115 9431

f 2 200 9453 833 1970 1526 9392
6 4f 2 200 1.05 10 1775 1.18 10 5617 22213
5f 2 200 1.32 10 1496 7452 2886 21324

f 2 200 6086 881 2210 2035 12175

f 2 200 2546 450 1084 786 4826
54 400 2.59 10 2990 2853 6909 5879
9 4 4 48 800 4.03 10 1.31 10 8189 5.32 10 6.33 10

f 2 200 941 511 421 425 5337

4 400 3069 1217 911 750 1347
8 800 7793 2623 1785 1877 3122

as partition sets. For f (only one global minimum point) the parameter space is7

divided into 4 parts of equal size determined by the sign of the parameters x and x .1 2
2Measuring and adding (NR 2 NR ) /NR for each partition setsample expected expected

defines a statistic which (approximately) has a Chi-square distribution. Here it
means that under the hypothesis of uniformity, the statistic has an expected value of
3 and the hypothesis is accepted when a value less than 7.8 is found (95%
confidence limit, chi-square distribution with 3 degrees of freedom).

An important factor in the analysis of Section 3 is the so-called failure rate; the
number of function evaluations that do not give an improvement of the level set
divided by the total number of function evaluations. We measured those criteria for
one run of the UCPR algorithm with values for the parameter c of 2, 1.5 and 1.2 for
the problem f with dimension n of 2, 3 and 4. We just consider one run for each7

case, to be able to have a look at the final sample.
It is clear that for lower values of c the failure rate decreases, which causes the

total number of evaluations that have to be done going down. The drawback is that
the uniformity of the final set of points grows worse, although this is hard to
conclude from the table given that only one sample has been generated. On the other
hand, an extreme example could be observed for the case with c 5 1.2 and n 5 3: In
a certain iteration all points generated have negative values for x . The parameter c2

Table 3. Results of UCPR problem for f , varying dimension n and values of c7

Number of function Failure rate Uniformity
evaluations (Chi-square stat.)

c n 2 3 4 2 3 4 2 3 4

2 437 1158 2809 18% 55% 77% 0.88 110.96 3.28
1.5 344 709 1437 8% 28% 55% 10.48 16.24 0.88
1.2 292 734 1155 4% 16% 25% 12.56 77.04 36.08
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is too small to give that new points are generated at the other side of the axis.

5. Conclusions

The problem of generating a sample of N points over a level set S(a) was studied.
The number of function evaluations necessary to generate N points from a uniform
distribution over a level set S(a), is linear in the dimension for the theoretical ideal
algorithm of Pure Adaptive Search (PAS). Like every good ideal, it probably is
impossible to reach. This impossibility can be derived from considerations on
complexity of global and integer programming. The same theoretical complexity
may be reached by a modification of PAS which uses a sample of points called
N-points PAS. The algorithm of Uniform Covering by Probabilistic Rejection
(UCPR) is a heuristic practical approximation of N-points PAS. For higher
dimensions the deviation from the ideal becomes bigger. The test results show that
UCPR performs in general better than other practical alternatives such as Pure
Random Search, Controlled Random Search and a variant of the Hit and Run
algorithm. The development of better algorithms, i.e. closer to the ideal, is still a
challenge to Popperian science.
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